Scalable Ensemble Learning and Computationally Efficient Variance Estimation Scalable Ensemble Learning and Computationally Efficient Variance Estimation Scalable Ensemble Learning and Computationally Efficient Variance Estimation

نویسندگان

  • Erin E. LeDell
  • Alan E. Hubbard
چکیده

Scalable Ensemble Learning and Computationally Efficient Variance Estimation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Atmospheric tomography with separate minimum variance laser and natural guide star mode control

This paper introduces a novel, computationally efficient, and practical atmospheric tomography wavefront control architecture with separate minimum variance laser and natural guide star mode estimation. The architecture is applicable to all laser tomography systems, including multi conjugate adaptive optics (MCAO), laser tomography adaptive optics (LTAO), and multi object adaptive optics (MOAO)...

متن کامل

Nearest-Instance-Centroid-Estimation Linear Discriminant Analysis (NICE LDA)

We propose a novel ensemble classification technique called the Nearest Instance Centroid Estimation (NICE) LDA algorithm. Our algorithm (inspired from NICE KLMS) performs a combination of two weak classifiers threshold based clustering and linear discriminant classification to achieve stateof-the-art results on various high dimensional UCI datasets. We discuss the important ways in which our m...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Tree-Based On-Line Reinforcement Learning

Fitted Q-iteration (FQI) stands out among reinforcement learning algorithms for its flexibility and ease of use. FQI can be combined with any regression method, and this choice determines the algorithm’s statistical and computational properties. The combination of FQI with an ensemble of regression trees gives rise to an algorithm, FQIT, that is computationally efficient, scalable to high dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015